Магниторазрядные насосы

Широкое распространение магниторазрядных насосов объясняется их высокими техническими характеристиками, простотой эксплуатации и обслуживания, высокой надежностью и большим ресурсом работы. Основная откачка активных газов магниторазрядными насосами осуществляется в результате хемосорбции газов постоянно возобновляемой пленкой титана. Непременным условием эффективной и устойчивой работы магниторазрядных насосов является соответствие количества распыляемого титана количеству поступающего газа. При приложении разности потенциалов между электродами разрядного блока, находящегося в вакууме, в ячейках насоса возникает электрический разряд.
Принцип устройства магниторазрядного насоса иллюстрируется рис. 3.33

Принцип устройства магниторазрядного насоса

Плоские титановые катоды 1 и анод 2, состоящие из многих прямоугольных или круглых ячеек, образуют электродный блок, который помещается в магнитное поле, создаваемое постоянным магнитом 3. Каждое отверстие в аноде вместе с противолежащими участками катодов образует разрядную ячейку насоса. При приложении разности потенциалов между электродами разрядного блока, находящегося в вакууме, в ячейках насоса возникает электрический разряд.
Для возникновения разряда достаточно случайного присутствия в разрядном промежутке нескольких электронов. Под действием сильного магнитного и электрического полей электроны движутся по спирали вокруг оси разрядной ячейки. На своем пути электроны производят ионизацию газа. Образующиеся положительные ионы, бомбардируя катод, распыляют титан из катодных пластин. Поскольку основная часть распыляемых частиц титана представляет собой электрически нейтральные атомы и молекулы, они осаждаются на все поверхности электродов, но в основном на анод. Активные газы, попадая на непрерывно возобновляемую пленку титана, хемосорбируются ею. Катоды также поглощают газы, но из-за постоянного распыления большей части их поверхности вклад катодов в процесс откачки активных газов незначителен.
Таким образом, основным механизмом при откачке активных газов является хемосорбция газов непрерывно напыляемой на аноде пленкой титана. Наряду с этим в магниторазрядных насосах имеет место проникновение ионов в материал катода. Последнее характерно для откачки легких газов — водорода и гелия. Водород легко диффундирует в титане, образуя твердые растворы. Непрерывное поступление ионов водорода на поверхность катодов создает повышенную концентрацию водорода на поверхности, которая приводит к диффузии водорода в глубь катодов. Если в откачиваемом сосуде присутствует только водород, поглощение его титановым катодом является основным механизмом откачки, поскольку распыление материала катода в результате бомбардировки его ионами водорода мало и основной механизм откачки магниторазрядных насосов — хемосорбция напыляемой пленкой титана в значительной степени ослабляется. Если откачивается смесь водорода с более тяжелыми газами, то распыление титана происходит интенсивнее и заметная часть водорода откачивается на других поверхностях насоса.
Откачка тяжелых инертных газов преимущественно осуществляется катодами. В силу больших размеров и соответственно малой подвижности ионов этих газов диффузия их в глубь катода практически отсутствует. При бомбардировке катодов ионами инертных газов, например аргона, поверхностный слой распыляется, в результате чего вновь высвобождается ранее поглощенный аргон. Таким образом, ионы аргона необратимо поглощаются только небольшими участками катодов, которые не подвержены эффективной бомбардировке ионами газа.
Внедрение ионов инертных газов в материал катода сопровождается замуровыванием ионов, распыляемым титаном. Такой механизм, хотя и не создает большой быстроты действия, является основным при откачке инертных газов маг-ниторазрядным насосом.
Поскольку химическая активность различных газов и эффективность распыления титана их ионами различны, быстрота действия магниторазрядных насосов существенно зависит от рода откачиваемого газа. Относительная быстрота действия магниторазрядных насосов по разным газам, выраженная в процентах от быстроты действия по воздуху, представлена в табл. 3.1.

Таблица 3.1. Относительная быстрота действия диодных магниторазрядных насосов по разным газам

Газ

Быстрота действия, %

Газ

Быстрота действия, %

Водород

250-350

Азот

100

Метан

300

Двуокись углерода

85

Аммиак

170

Кислород

55

Этиловый спирт

135

Гелий

10-20

Пары воды

130

Аргон,

 

Воздух

100

криптон, неон

1-4

Недостатком диодных магниторазрядных насосов (рис. 3.34) является малая быстрота действия по инертным газам. Этот недостаток в меньшей степени присущ триодным магнито-разрядным насосам, схема устройства которых показана на рис. 3.35.
Электродный блок образует анод, располагаемый в середине, и два катода. Коллектором является корпус насоса. Катоды триодного насоса имеют ячеистую структуру, в силу чего положительные ионы, образующиеся в разряде при работе триодного насоса, бомбардируют катод не под прямым углом, как в диодном насосе, а под острым углом, что существенно увеличивает эффективность распыления титана, который равномерно осаждается на корпусе насоса. Благодаря триодной схеме и ячеистой структуре катодов часть ионов, движущихся из области анода, достигает коллектора (корпуса насоса). Ионы, достигнувшие коллектора, обладают малой энергией и не могут вызвать вторичного распыления титана с коллектора при их поглощении.

Принципиальная схема диодного магниторазрядного насоса

Рис. 3.34. Принципиальная схема диодного магниторазрядного насоса:
1 — катоды; 2 — анод; 3 — постоянный магнит; 4 — балластное сопротивление. Стрелкой указано направление магнитного поля

Схема триодного магниторазрядного насоса

Рис. 3.35. Схема триодного магниторазрядного насоса:
1 — анод; 2 — катоды; 3 — коллектор (корпус насоса); В — вектор напряжения магнитного поля

 

Таким образом, благодаря однопотенциальной триодной схеме насос имеет повышенную быстроту действия по инертным газам. Например, по аргону она составляет 1/3 от быстроты действия по воздуху

Эксплуатация и обслуживание
Перед подключением необходимо проверить сопротивление утечки между анодами и катодами, которое должно быть не менее 1 ГОм.
После проверки насос помещают в вакуумную систему, снабженную средствами предварительной откачки, и устанавливают магниты. Магниты в насосе располагаются таким образом (рис. 3.36), что силовые магнитные линии замыкаются, проходя через все магниты и магнитопроводы. Боковые магниты, расположенные с боковых сторон насоса, приклеиваются на заводе-изготовителе к металлическому листу, являющемуся магнитопроводом. Центральные магниты, вставляемые в пазы корпуса насоса, склеиваются попарно. Устанавливать магниты удобнее в такой последовательности. Вначале закрепляют на корпусе насоса боковые магниты. Перемена местами при установке пластин с боковыми магнитами не имеет значения, так как в любом случае вектор напряженности магнитного поля в насосе сохранит свое направление. Затем устанавливают центральные магниты. В результате взаимодействия магнитных полей боковых и устанавливаемого магнитов последний должен втягиваться в паз корпуса насоса. Если при установке магнит разворачивается, а после установки он выталкивается назад, то необходимо перевернуть магнит. Затем охлаждаемые насосы подключают к системе подачи и слива воды. Подсоединяют блок питания. Создают предварительное разрежение и производят пробное включение насоса.

Расположение магнитов в магнито-разрядном насосе

Рис. 3.36. Расположение магнитов в магнито-разрядном насосе

Длительность старта магниторазрядных насосов зависит от степени чистоты внутренних поверхностей откачиваемого сосуда и насоса, а также от степени предварительного разрежения. Допускается запуск неохлаждаемого магниторазрядного насоса с давлений более 10 Па (0,1 Тор), но в таком случае длительность старта может превышать 3 часа. Если нет возможности создать лучшее предварительное разрежение, запуск насоса производят, не прекращая предварительной откачки. Средства предварительной откачки разобщают с откачиваемым сосудом и насосом после того, как стабильно начнет понижаться давление.
Длительный старт не является особо опасным для магниторазрядных насосов. Это видно из рис. 3.37, на котором изображены энергетические характеристики насоса НОРД-250. Наиболее опасными являются давления 10-2 Па (10-4 Тор) для охлаждаемых и 10-3—10-2 Па (10-5—10-4 Тор) для неохлаждаемых насосов. Именно в этом диапазоне давлений насос потребляет максимальную мощность, которая рассеивается на электродах разрядных блоков и приводит к их неравномерному нагреву, что может вызвать деформацию корпуса насоса.
Достигаемое с помощью магниторазрядных насосов предельное остаточное давление зависит от предыстории насоса, суммарной наработки режимов работы и рода откачиваемого газа. На предельное остаточное давление, так же как и на длительность старта, сильное влияние оказывает загрязнение насоса углеводородами.
Например, создание предварительного разрежения с помощью механических насосов с масляным уплотнением повышает предельное остаточное давление в 5—10 раз. В последующем паспортное значение предельного остаточного давления может быть достигнуто после 10—20-часового прогрева насоса при откачке его цеолитовым насосом. Насос хорошо обезгаживается и восстанавливается и при прогреве его с откачкой механическим насосом с защитной ловушкой.

Энергетические характеристики

Рис. 3.37. Энергетические характеристики: ток разряда (I), разрядность потенциалов на электродах (V) и мощность (W), потребляемая насосом НМДО-0,25 (НОРД-250), в зависимости от впускного давления

 

Опыт эксплуатации магниторазрядных насосов убеждает в практически неограниченном их ресурсе (~150 тыс. часов) при достаточной аккуратности обслуживающего персонала.

ПредыдущаяСледующая